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SUMA4ARY

It has been demonstrated that classical pmbabjtitics,  and in particular,
probabilistic Turing machine, can be simulated by combining chaos and
non-l, ipschilz dynamics, without utilization  of any man-made devices (such
as random number generators). Self-organizing properties of systems
coupling simulated and calculated probabititics and their link to quantum
computations are discussed.

Classka]  dynamics is fu]]y deterministic if inilia] conditions am known cxact]y.
Uherwisc  in some non-linear systems, small initial crtors may grow exponentially so that
the systcm behavior attains stochastic-like features, and such a behavior is called chaotic.
The discovery of chaos contributed in better understanding of irreversibility in dynamics,
of evolution in nature, and jn interpretation and nmtelling  of coJnplcx  phencJJncJla  in
physics and tiology. 1 lowever,  there is a class of phenomena whjch  cannot be represeJ]tect
by chaos directly. I“hjs class includes so called discrete events dynamics where
raJdoJmess  appears as point events, i.e., there. is a scqueJm  of randoJn occureJmx  at
fixed or raJdoJm tiJnes, but there is JIO artclitioJ]al  COIIlpOJWJIt of uncertainty between these
times. “l’he simplest example of such a phCJIOI~MOJ~  is a heartbeat dynamics which, in the
first approximation, can be modellect  by a sequence of p~Jlses  of equal heights and
durations, but the duratioJls  of the pauses betwmn these pulses are raJdon~ly  distributed.
Most processes of this type are associatd  with iJltellectual  activities such as optimal
behavior, decisioJl  making process, games, etc. IJI general, discrete events dynamics is
characte.rjmd  by a well-defined probabilistic structure of a pieccwise-dete.rn~  iJlis(ic  Markov
chai Jls, and it can be represented by probabilistic l’uriJ~g nlachi  Jm. On the contrary, a
probabilistic structlJre of chaos, and even the appearance of chaos at all, caJ~not  be predicted
based oJ~ly upon the underlying Jmocbs] without actual numerical ruJ]s. (’1’hc [ast statement
can bc linked to the ~ichardsoJ1’s  I ] ~ proof that the theory of elementary fuJ~dions  in
classical analysis is uJvdecidable).  But is there a “missing link” between chaos aJd discrete
events dynamics? AJKt if it is, can thjs ljnk be simulated based only LIpOII physical laws
without exp]ojting  any man-made devices  such as randoJ]l Jlumber generators? A positive
answer to this question woLlkt  make a fundamental contl”ibutioJl  to the reductionists view on
jntrinsic unity of science that al] natura] phcnonlena are rectucxib]e to physical laws.
J lowevcr, in acMjtioJ]  to t}lis philosophical aspect, there is a computational advantage in
exploiting sjmulatcd  probabilities instead of calculated ones in the probabilistic I’uring
machine:  as shown by R. Feynman  [*I, the mponmtial  comp]exjt  y of algorithms iJ~ terms
of calculated probabilities can be reduced to polynomial complexity in terms of sjmulatcd
probabilities.



III this paper we dcnmnstrtite  that the missing link between chaos and a discrete
event pmcessczm  &rc~3rescIltedb  ylloll-lJiI>scl} it7dy  Il;illlics. [3-5]

in order to illustrate. the basic concepts of non-1 .ipschitz dynamics, cc)nsider a
rectilinear motion of a particle of unit mass driven by a non-l ,ipschity  force:

.
v = \~l)l/3sin  W, l! =- (otlkyt, [v] =- -’?f:-;i

sec
(1)

where v and x are the particle velocity Hnci position, respectively.
Sub@t to the zero initial condition

v = o at t=()

equation (1) has a singular solution

v = o

and a regular solution

(3)

(4)

(5)

‘1’hese  two solutions coexist at t = (), and this is possible because at this point the
1 .ipschitz  condition fdils:

Since

$;. ) o at Ivl # 0, t)()

(6)

(7)

the singular solution (4) is unstable, and the particle departs from rest following the
solution (5). I’his solution has two (positive and negative) branches [since the power in (5)
includes the square root], and each branch can be chosen with the probability p and (1 -p)
respectively. It should be noticed that as a result of (5), the mc)tion of the particle can bc
initiated by infinitesimal disturbances (such motion never can occur  when the l.ipschity
condition holds: an infinitesimal initial disturbance cannot become finite in finite tin@.

Strictly speaking, the solution (5) is valid only in the time interval



(8)

and at t = 27r / co it coincides  with the singular solution (4)

}Jor I ) 27r / co equation (4) becomes unstfib]c, aIIci the motion mpezits  itself to the
accuracy of the sign in equation (5).

1 lcnce,  the particle  velocity v performs oscillatims with respect to its mm value in
such a way that the positive and negative brancllcs  of the solution (5) altermte  randomly
after each period equal to 2 m / (o.

~’urning  to equation (2), one obtains the distance between two adjacent equilibrium
position of the particle:

(9)

Thus, the equilibrium positions of the particle, am

while the positive and negative signs Ianctoml y tiltmnate.  with probabilities p and (1 -p),
rcspcctivdyo

Obviously, the particle performs an utwestrictd  random walk: after each time
period

(11)

it changes its value on fh [see equation (10)].
l’he probability density f(x,t) is govcrnd  by the following ciiffercncc equation:

f(x, t + z)= pf(x - h,t)+ (1 - p)f(x + h,t) (12)

which represents a discrete version of the Fokkel-Planck  equation,
while

J:.f (xl) d~ = 1 (13) .

Several comments to the model (1) and its solution have to be made.

l;irstly,  the “viscous” force
f = –vv”3 (14)



(

includes  static friction (SCC  Eq. 6) which actually causes fCiilurc  of the I .ipschitz condition.
‘1’hcsc t ypc of forces m well-known in theory of vism-pkisticity  161. It should Ix noticed
that the pOWCI 1/3 Call bc II+accd  by dlly pOWeJ Of the ty~w:

~=z!!:.l , n = 1,2,... etc
2)) + i

(15)

with the same final result (1 2). in particular, by selecting large n, one can make k close to
1, so that the form (13) will bc almost ictcntical  to its classical counterpart

),, = -- VI) (16)

cvcrywhcrc  excluditlg  a small ncighbmhod  of the cqui]ibrium point
point

v = O, while at this

[If’
but ~

,’

----- + cm, dl;- - ) o at
[Iv

1) –> o (17)

Smcmtly, without the ftiilure of the l.ipschitz conctiticm (6), the solution to Eq. (1 )
could not approach its equilibrium v = O in finite time, and therefore, the paradigm leading
to ranctom  walk (12) would not bc possible.

l(inally, we have to discuss  the infinitesimal ctisturbanms mcntionect in connection with the
instability of the solutions (5) at v = O. Actually  the original equation should be written in
the form:

where E(?) represents a time series sampled from an underlying stochastic promss
representing infinitesimal disturbances. It shoukt  be emphasinxt  that this process is JIOt
ctriving the solution of I+q. (1 8): it CJJIly trig~ers the mechanism of instability which
controls the energy supply via the harmonic oscillations siJ~@t. As fOl]OWS  fJ’(JJll h].

(1 8), the. function t(?)  can be ignorect  wheJl ;) = O or when ; # O, but the equation is
stable, i.e. 1) = 7tco, 2710.) ,.... etc. 1 lowevcr, it becomes significant during  the iJ~stants  of

iJlstability  when ~ = O at I = 0, m / 2[0 etc. ]JIciecd,  at these instaJlts, the solution  to ~’kl.
(1) has a choice to be positive or negative if e = O, (see eq. (5)). 1 lowever, with E if O,

i.e., t}~e sign of c at the critical instances of time (19) unicluely  defines  the evolution of the
c1 yJlan~ical  system (1 8). ~’bus, the ctyJ~an~ical  system (18) traJ~sfornls  a stochastic promss

(via its sample ~(f)) into a binary time series which, in turn, siJJ~ulates  a random-walk
(1 8). Actually the solution to eq. (18) represents a statistical signature of the stochastic
process c .

Within the fraJmwork  of dynamical forn~alisJn,  the time series C(t) can be
generaterl  by a fully deterministic (but chaotic) ciynamical  system. The simplest of such



syslcnl  iS the logistic  map which plays  a central  role in p0pll]2iti  OIl dyllalllics,  chemical
kinetics anti mmy other fields. in ils chaotic  domain

y,,+, ‘“ 4Y,1(I ‘“ .)’,*  ), y,, = ().2 (20)

the power spectrum for the solution is itldistillgllisllat]lc  from a white noise. 1 lowcvcr,  for
the better mtitch  with Eq. (1 8), wc will star( with a continuous version of (20) rcprcscntccl
by the following time-(iclay  eqLlation.

y([ + r)= 4.Y([)[I - y(l)], ‘r= ; : - (21)

}’(t’:

“l’he solution to E(I. (21) at

~’:. (t* (;O= ().2, -- (22)

I=(), 7c/ 2(1),... ctc, coincicks with the solution to lju.
(20), but clue to the speci~]y se’lectcd  inilia]  condition (22), the solLltion  to Eq. (20) chang&

‘r
its values at t = —~- , - -–, . . . . etc, so that at the points

4 (1) 4@
t=(), n /2[0,... , the sign of this solution is well-clefinul.

Now [ISSLIINC  that
8(1) = &()(  J’(l) – 0,51), cc, (( 1.

‘1’hc substmction  from y(t) ils mean value provi(ics  the comiition

]F 1-p=:;
]ndcd,  for the first hLlnclrcd  points in (23),

(23)

(24)

–+-+–+++--–+---+-––––  –++++––+

Sj,g)l  ~ : ‘- –++–+–+––++–--––+-  –+–––-t+–-+
+–’++–+ ++ --–+- ++++-+---  +++-+++..–+.

(25)

+––––++ -–– +-+ --–--4- ––

has equal number of positive and ne~ative  values which are practically not corre]ateci.
‘1’hcrcfore,  the statistical signature of the chaotic time series (23) is mxpressccl by the

.
solution to Eqs (12), (13) at p == ~- with the initial conciitions

2
~((),()) =1, f(x,())= O if x # O (26)

which is a symmetric unrestricted random walk:

f(x,?) = C:2-”;
1

( )

2@t
m = - (}1 -t x); n = integer –--–

2 Z
(27)



1 lcrc the binomial coefficient shoLlld be intcrprctcd as (1 whenever m is not an integer in the
interval [(), ~t] and n is the total numbe]- of steps,

I’k connection between  the solution (26) and the solutions to the system (18),
(21 ), (2) shoulct be uncimtooct  as follows. Suppose wc SOIVC the system (1 8), (21), (2)
subject to the intial  conctition  (2’2) with v = O and x = O (It f = O.
Sinm }iq. (21) is sLlpmensitive  to inevitab]c  errors in (22) the solution will form an
ensemble of chaotic time smics, and for any fixed instant of time this cnsmblc will have
the cormponcting  probability chmity  distribution which coi Jwides with (26). lJI other
worcts,  the probabilities described by Ii]. (1 2), are siJnLllated by the ciynamical  system
(1 8), (21) aJ~cl (2) without an explicit source of stochastiuity  (while the “hictcten”  source  of
stochasticity  is iJl finite precision of the initifil  conctition  (22)).

~onlbiJliJlg  SCVela] Ctynamica] systems of the type (] 8), (21), (2) aJld a]}plyiJlg  tin
appropriate ChaJlgC. of variables, 0JN3 can simulate a‘ pJ’obabilistic q’uring  JlX3Chi  JlC which
transfers oJle state to another with a pJ’cscJ  i bed transitional probabilities, 131. Non-
Markovian  properties of such a Jnachinc  caJ~ be iJworporatect by intro(luciJlg tiJm-dcltiy
terns in llq. (2).

i’= v(l) + ap(f - 7(1) + a2v(f-2T  [,) +.... (28)

] Iowcvcr,  there is a mm interesting way to CJlhaJKX  the ciynaJllica]  coJllplexity  of
the system (1 8), 21), (2). lmiee.et, let us tlJrn  to I;cl. (23) anct intrortuce  a feedback  from
Eq. (2) to Eq. (18) as following:

e=c[)(j–-x), c,, <<1,  y= y- 0.51 (29)

“1’hcn the Jlumber of negative (positive) signs iJ~ the striJlg (25) will prevail if
x ) O (x ( O) since the effective 7cro-crossiJlg,  line Jmoves clown (up) away from the

middle.  ~’bus, wheJ~ (x = ()) at t =- (), the system starts with an unrestrictcct  raJldoJm
walk as cicscribcct above, ancl 1x1 grows. 1 lomwvcr,  this growth changes signs in lkl. (23)

such that ~ ( O if x ) 0, and ~ ) O if x ( O. As a result of that
~

< Ymax, ‘n(in  2 Yn]inmax
( 3 0 )

w h e r e  I“,ax and  Ymin are the largest aJ~ci the smallest values iJ] the tiJm series y (t),
respectively. 1 lence,  the dynamical systeJll ( 1 8), (23), (2) simulates a restrictut  raJKtonl
walk with the bounctaries  (30) implemcntcxl  by the ctynamical  feedback  (29), while the
probability

{

Oifx = ym
p(Lfig//c)O)  = —. .——

1 if x = y“)i”
(31)

lior the sake of qualitative discussion, assuJm that p chaJ~ge  liJlearly between x = y,,,,. aJKI

“ Y
~ =.

“lax.  > i“e”~



.

/

() v J’ > .Y,,,,,X
_ J’,,,,,, ‘- J’p = --– --- <.y<)lv- Y,,,,,, -- . ,,,3, (32)
y“,:,, -- y,,,,,,

1 if -~ < Y,,,,,,

(the actual  functim]  p(x) dcpencts  upon statistical properties of the underlying chaotic  time
series y(t)),

‘1’hcn the sin~Lllate~  rcstrictcct  random walk as a so]ut ion to Rqs. ( 12) and (32.)
1 et us nmctify  the feedback (29) as

c==++’ - x)] (33)

Now when x=O at t=O, the systm is uilstablc since

and the process is divided  into two branchcx. ‘l”he negative branch (with the probability
1/2) represent an unrestricted ranctom walk (x - ) ~), while the positive branch (with the
san~c probability ~ ) is eventually trappect within the basin of the attractor x = 1 since

simulating a rcstridd  random  walk as those dcscribcct above with the only ctiffmmm that
its center  is shifted from x = O to x = 1.

As a next step in complexity, introduce the information }1 associated with the
random walk process described by Eqs. (1 2), (1 3):

/] = -- @3g2  fctx
-c.,

(36)

and modify the feedback (29) as following:

t = co [y - x(]+ 2flog2f)] (37)

where –~ IogJ ~is the information per unit step of x.

l’o]lowing  the same line of agrLlmcJ~tation  as those perfornmt  for the fmxtback (29),
onc coJIcludcs  that the feedback (38) becomes active only if the process is olJt of the
domain  of the. maximum information, aJd  therefore, it is always attt’actwl  to this domain.

Since Eq. (31) is still valid,  we will apply the approxiJnatioJ~  similiar to (32):



p == I yn,,,x  - x(] -1 //)
if y,,,,,, +[(] + }/) < },

Ym:*x ‘“ Yn,m
. n,:lx

1 if x(] + //) <yn,,,,

(38)

in order to continue our qualitative analysis. It should bc noticed that now p (tcpencts  not
only on x, but also on f, and that makes Eq. (12) non]incar. in addition  to that, the systcm
(1 8), (2) and (37), which is simulating pmbabiiitics, is coupld with the system (1 2), (1 3)
anct (38) describing the evolution of calculatd  pmbabi]itics. Actually due to this coupling,
the entire ctynamical  system attains such a self-organizing property as to maximize the
information gencratcct  by the random walk.

“1’he  s e l f - o r g , a n i z i n g  p r o p e r t i e s  of the system (1 8),  (2), (37), (I 2), (1 3) and (38)
mcntionect  above  have, a very intcmting  con~pL1tational  interpretation: they provick  a
mutual influence between ctiffmmt branches of probabilistic scenmim. Such an influcm-c
or iIltCl”felCIICC,  is eXp]Oited  in hypothctica]  quantum computer 171  as a more pOWC.lfLll tool
in a complexity theoretic sense, than classical probabilistic computtitions.  }Iowevcr, in
quantum computer, the intcrfcrenm  is restricted to a unitary m:itrix transformation of
probabilities (which is the only  OnC  allowed by quantum mechanics laws), while in the
classiciil  systcm (1 8), (2), (37) there is no such restriction; by choosing an appropriate
probabilistic term in the feedback (37), wc can provide an optimal interfcmnce.
llnfortLlnately,  the prim paicl  for such a proper[y  is the necessity to exploit t}~e caluu]atcxt
probabilities (12), (13) and (38), which, in many cases is a significant disadvantage.

in conclusion, we will briefly summarize the results, Firstly, it has been
&monstratect that a differential dynamiml  system which couples a simple generator of
chaos anct a non-1 .ipschitz  ciynnmical  ctcvice can simulate stochastic processes of prescribe.ct
cxmplcxity  without exploiting man-matte ctcviccs (sLwh as step-fL1nctioJls,  random  Jlumbcr
generators, etc.) i.e., based only upon physical laws, The last property is inq>ortaJ~t  for
physical interpretation of J~ol~-dete.rll~il~istic  biological processes (healtbmts,  breathing
pcriocis,  electroencephalograms).

Secondly, a new level of dynamical complexity was iJltroctucect  by colJpling the
non-1 .ipschitz  system (1), (2) and  the associated probability equation (12) representing a
discrete  versioJ~ of the I~olker-PlaJlck  equatioJ]. l-his sytcJTl  attains eJllerging  se] f-
orgaJliz.aticm  properties which can be utilizect  for synthesis of intelligent systems simulating
optimal behavior, decision making processes, games, etc.

‘1’hirctly, the Jlon-Lipschitz  chaos caJ~ be a part of a qLlaJ~tun~-iJlspireci  computing
device. indeed,  it sililu]ates  probabilities via physical processes, aJKI it provides influeJwe
bet wecn ciifferent  probabilistic branches imitat ing quantum interference of probabilities (SCC
cqs. (2),(] 8) and (37)). Moreover, basect  upon the equivaleJ~ce  bctweeJl  quantum
Jmxhanics  in imaginary tiJne and classical  statistical mmhanics  in real time oJle CaJI simulate
the %hrtidillge.r  equation by the fu]ly  dcternliJIistic  (but uJlstab]e)  dynamical  system  (2),
(1 X). ~’he  o n l y  “non-dyJ~an~ical” s t e p  iJ] such simulatioJ}s  i s  t h e .  r e p l a c e m e n t  o f

t by ~~. Hence, forqlally the dynamical system (2), (18) being consicte.reri  in a .
~Jseucto-euclccl  ian space, can J’cpmsent d deterministic microstructure be.hinct  the
Schr&lingcr  equation in the same way in which it represents those for the Fokker-PlaJwk
equation in real time,
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